If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2+4x=0
a = 49; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·49·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*49}=\frac{-8}{98} =-4/49 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*49}=\frac{0}{98} =0 $
| 50=2x+4 | | 8c+17=16c+33 | | 14+3x-x=122 | | 180–x=4(90–x) | | 180–x=4•(90–x) | | 180–x=4•(90–x | | 9x-3=5x+23 | | 2h/6=40 | | -9=-4*a | | 2⋅(x+5)=6x+30 | | 5=2.5w | | 0.8x^2+x=0 | | 9=3/4;e=12 | | r-74=-19 | | M(8)=t-9^3 | | 8(t)=(t-9)^3 | | 3b-1=14;b=3 | | -2x-16=2x-24 | | -5x+3.7=7x=10.9 | | 2x=10;2=5 | | 8x-4=8x-56 | | 17g+57=9g+1 | | G(-3x)=x^2-1 | | 4(12x-10)=8 | | 200=8n-40 | | Y-5=3/2(x+4) | | 6p+43=1 | | 16+4d=3 | | 59=5-9d | | Y-4=2.5x+7.5 | | 5=5-9d | | 21-2x=1 |